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When a neutral nonelectrolyte is added to an electrolytic solution, the
electrical conductance of the electrolytic solution is usually reduced.
Attempts to correlate this effect with changes in the bulk properties of the
solvent have been unsuccessful. The purpose of this paper is to account
for this effect (for dilute solutions) in terms of a statistical mechanical
theory which takes into account the specific interactions between molecules
of the nonelectrolyte and ions of the electrolyte. A simple continuum model
is used to represent the solution containing nonelectrolyte molecules and
electrolyte ions placed in a constant, homogeneous electric field. With an
approximate theory valid at infinite dilution, an equation describing the
variation of the limiting equivalent conductance of the electrolyte with the
concentration of an ideal dipolar nonelectrolyte is obtained. Comparisons
with experiments are made.
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1. INTRODUCTION

When a neutral nonelectrolyte is added to an electrolytic solution, the
electrical conductance of the electrolytic solution is usually reduced. Attempts
to correlate this effect with changes in the bulk properties (for example, the
increase in viscosity) of the solvent have been unsuccessful.’=® The purpose
of this paper is to account for this effect (for dilute solutions) in terms of a
statistical mechanical theory which takes into account the specific inter-
actions between molecules of the nonelectrolyte and ions of the electrolyte.
A simple continuum model is used to represent the solution containing non-
electrolyte molecules and electrolyte ions placed in a constant, homogeneous
electric field. With an approximate theory valid at infinite dilution, an equa-
tion describing the variation of the limiting equivalent conductance of the
electrolyte with the concentration of an ideal dipolar nonelectrolyte is
obtained. The calculations are similar to those given by Onsager and Fuoss
(see Ref. 4) in their theory of the conductance of electrolytes, and to those in
the theory of the electrolytic transport of nonelectrolytes presented in a
previous paper,® hereafter referred to as I. For the most part, the notations
and previous results used here are those of I.

In addition to the force due to the external electric field, three origins of
translatory force acting on a reference ion are considered. The first, called
the relaxation force (see Ref. 4, p. 123, and Ref. 5, pp. 4, 38, and 39), is due
to the asymmetry which the external electric field produces in the distribution
of nonelectrolyte molecules about the reference ion. Because of this asym-
metry, the forces between the nonelectrolyte molecules and the reference ion
are no longer in balance, and there is an average resultant translatory force
on the ion. The second, called the kinetic force (see Ref. 6 and Ref. 5, pp.
86-91), is also due to the asymmetry in the distribution of nonelectrolyte
molecules about the reference ion. However, this effect arises through an
imbalance of collisions between the nonelectrolyte molecules and the ion;
or, alternately, through an imbalance of the osmotic pressure on the ref-
erence ion. In order to obtain explicit expressions for these forces the (non-
electrolyte molecule, electrolyte ion) pair configuration correlation function is
needed. This is assumed to consist of an equilibrium term of order zero in
the external electric field (that is, of the canonical ensemble pair correlation
function applicable to the system when not subjected to the external electric
field) plus a first-order perturbation term proportional to the external electric
field. This perturbation term is obtained by solving the equation of continuity
in the (nonelectrolyte molecule, electrolyte ion) pair configuration space.
The third and final force gives rise to the electrophoretic velocity (see Ref.
4, p. 156, and Ref. 5, pp. 92-94) of the reference ion. This velocity results
from fluid motion in the neighborhood of the reference ion—it arises when
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the solute particles being transported through the solution cause the fluid
in the neighborhood of the reference ion to move with a velocity differing
from that of the fluid as a whole. In determining this velocity, we assume that
our model obeys Stokes’ law.

As mentioned before, the calculations carried out in this paper are valid
only at infinite dilution. In the equation for the limiting equivalent con-
ductance of the electrolyte, terms linear in the nonelectrolyte concentration,
but independent of the electrolyte concentration, appear. Indeed, we express
the limiting equivalent conductance of the electrolyte (extrapolated to zero
electrolyte concentration) at the fixed nonelectrolyte concentration %, (in
moles/liter) in the form

A® = A@ 4 Jg,

where A® is the limiting equivalent conductance of the electrolyte (extrap-
olated to zero electrolyte concentration) in the absence of added nonelectro-
lyte; and

L dA® . dA
R A A
0= 0

Here A is the equivalent conductance of the electrolyte and ¥ is the con-
centration of the electrolyte (in moles/liter). The purpose of this paper, then,
is to obtain a theoretical expression for the coefficient J.

Finally, comparisons with experiments are made.

2. A MODEL REPRESENTING THE SOLUTION

As stated in the introduction, a simple continuum model is used to rep-
resent the dilute solution containing nonelectrolyte molecules and electro-
lyte ions (see Ref. 5, pp. 96-100). Our classical fluid system is a dilute solution
containing N solute molecules or ions dissolved in a solvent so that the total
volume of the system is V. There are N, nonelectrolyte molecules (species o)
and N, electrolyte ions of species «, where o runs from 1 to o.

The solvent is a structureless, viscous, incompressible dielectric contin-
uum with dielectric constant € and viscosity .

The nonelectrolyte molecules are rigid spheres, large in comparison to
the solvent molecules, each having radius &, and djelectric constant ¢,. Each
such sphere has a zero net charge, and a possibly nonzero dipole moment
(of magnitude u,) which we represent as a point or ideal dipole of moment
&, located at its center. The center of mass of each sphere is located at its
center. The kinetic entity moving in the solvent is not necessarily the bare
nonelectrolyte molecule of radius b, ; usually it is the nonelectrolyte molecule
plus a number of adjacent solvent molecules. This entity is assumed to be a
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sphere of radius %, with Z, being called the hydrodynamic radius of the
nonelectrolyte molecule (at infinite dilution). Finally, we let D, be the
translational diffusion coefficient of the nonelectrolyte molecule (at infinite
dilution); and we let D{® be its rotational diffusion coefficient (also at
infinite dilution).

The electrolyte ions are rigid spheres having nonzero net charges,
having dielectric constants the same as that of the solvent, and having
spherically symmetric charge and mass distributions. We let e, be the charge
of an ion of species «; we let b, be its radius; we let %, be its hydrodynamic
radius (at infinite dilution); and we let D, be its translational diffusion co-
efficient (also at infinite dilution).

The very existence of a solution of nonelectrolyte molecules and electro-
lyte ions depends on their having finite closest distances of approach. Thus
we let a,, represent the center-to-center distance of closest approach of an ion
of species « and a nonelectrolyte molecule of species o.

According to our picture of the solution, the various solute particles
are rigid, charged spheres which interact with one another according to the
laws of classicial electrostatics and classical mechanics. The nonelectrolyte
molecules are assumed to be present at extremely low concentrations so that
their mutual interactions can be neglected. The forces operative between
the nonelectrolyte molecules and the electrolyte ions are the long-range ion-
dipole electrostatic forces, the short-range ion—cavity electrostatic forces,
which are respulsive in nature, and possibly other (unspecified) short-range
forces. In particular, the electrostatic contribution to the mutual potential
energy of a nonelectrolyte molecule of species o in configuration q, = (r,,R,)
and of an electrolyte ion of species « in configuration q, = (r,, R,), as given
by Egs. (D10), (D15), (D12), and (D13) of L, is

Voo:(qos qzz) = V(ka(qo’ qa) + Vc?o?'(qoa th) (1)
where
V0 0) = 5t ol e 6 @
oo 0 (:4 2€ + 60 ra20 (] Tao? a0 a0
is the potential of the long-range ion—diplole electrostatic force, and where
+® n
Voso:R(qoa qa) = Z dozx,n (;Z_ag) ’ Fao Z Qoo (3)
n=4 @o

with

s =) B
e ¢ 2ene + (n — 2eo) @z’
doa,n =0 nodd

neven (4)

represents a short-range ion-cavity repulsive force between the electrolyte
ion and an image distribution in the spherical cavity of low dielectric
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constant created by the nonelectrolyte molecule in the solvent. Of course,
r,, = r, — Ir, is the vector from the center of the nonelectrolyte molecule
of species o to the center of the electrolyte ion of species «; the number r,,
is the length of the vector r,,; and 1, = (1/r,,)r,, is the unit vector with the
same direction as Iy,.

To account for the fact that the nonelectrolyte molecules and electrolyte
ions are rigid spheres which do not interpenetrate one another, we define

Tao

VozsoR(qoz qa) = +00, Fao < Qo (5)

Finally, we recognize that other short-range forces may exist. In order
to account for these, we can allow the constant coefficients d,, ,, in Eq. (3)
to be parameters which may be determined by various experimental or
theoretical methods.

3. EQUIVALENT IONIC CONDUCTANCES

When a solution containing an electrolyte is placed in a constant homo-
geneous electric field (a dc electric field with the constant homogeneous
electric field intensity E = EK) and maintained at a constant uniform tem-
perature T, the ions of the electrolyte undergo transport. Steady state motion
is set up. The mean velocity of the ions of species « is denoted by u,, and the
macroscopic stream velocity of the whole fluid is denoted by u. The relative
mean velocity of the ions of species «, denoted by u, — u, is ordinarily
assumed to be proportional to the electric field strength. The corresponding
quantity (see Ref. 2, p. 43) which depends only on molecular and ionic
parameters is the equivalent ionic conductance A, given (in units of cm?
equiv-! ohm~?) by
1 ey U, — U

A = 55575 el 7 E ©
where F is the Faraday (in units of C/equiv); ¢, is the charge of an ion of
species « (in electrostatic units); E is the electric field intensity (in electro-
static units); and u, — u is the relative mean velocity of the ions of species
o (in units of cm/sec).

It is the equivalent conductance A of the electrolyte, given by

A= z A )

which is ordinarily determined from experimental data. With a fixed non-
electrolyte concentration, A is measured at a number of differing low electro-
lyte concentrations. Extrapolation to zero electrolyte concentration [hence
the superscript (0)] gives the limiting equivalent conductance AL of the
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electrolyte at the fixed nonelectrolyte concentration (the subscript o specifies
the nonelectrolyte).

We must obtain a theoretical equation describing the variation of A
with the concentration of the nonelectrolyte for extremely small nonelectro-
lyte concentrations. Our task then is to obtain a theoretical expression for
u, — u, and hence for A,, which shows explicitly its dependence on the nature
of the electrolyte and on the nature and concentration of the added non-
electrolyte.

The relative mean velocity of the ions of species «, as given by Eq. (114)
of I, is

B(r) — W) = Volralr) + D5 FD () + KO(r)] ®)

Here F{P(r,) represents the force on a reference ion of species « at position
T, due to the external field as well as the relaxation force on the ion [see
Eq. (29) of I]; K{P(r,) represents the kinetic force on the reference ion [see
Eq. (103) of I]; and, v,,(r,|r,) = wu,(r.|r,) — u(r,) represents the electro-
phoretic velocity of the reference ion [see Eq. (107) of I]. Since the electric
field is homogeneous, u,(r,) — u(r,) and the various quantities in Eq. (8) do
not depend on position, i.e., they are independent of absolute locations in the
fluid.

4. AN APPROXIMATE THEORY VALID AT INFINITE DILUTION

Using the model described in Section 2, we now turn to the task of
obtaining an approximate theoretical expression for the equivalent ionic
conductance A, as given by Eqs. (6) and (8). The theory presented here will
be valid only at infinite dilution, i.e., as the macroscopic number densities
of the nonelectrolyte molecules and of the electrolyte ions approach zero.
In particular, we shall restrict our attention to solutions in which: (1) the
macroscopic number density of the nonelectrolyte molecules C, is so low
that we can neglect higher order terms in C, relative to terms of order C,,
and intermolecular forces between nonelectrolyte molecules can be neglected;
and (2) the macroscopic number densities of the electrolyte ions C,, where
« = 1,...,0, are so small that they can be neglected relative to unity (or
relative to any nonzero term).

4.1. Pair Correlation Functions

In order to proceed further, we need an approximate expression for
the nonequilibrium oca-pair configuration correlation function g2(q.; 4.),
as defined by Eq. (43) of 1. Using Eq. (44) of I, we write

852005 92) = 28529(Q0; 4o) + 855145 Qo) )]
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expressing g{2(q, ; q.,) as the sum of an equilibrium term g$2-%(q, ; q.) of order
zero in the external electric field E plus a first-order perturbation g$2V(q, ; q.)
proportional to E. As usual, we are neglecting terms of order E? relative to
terms of order E. Here we shall also neglect terms of order C, relative to
unity—this being allowed so that we later retain only terms of order C,
and omit higher order terms in C,.

When terms of order 1/N, and 1/N,, where o = 1,..., 0, and terms of
order C, and C,, where « = 1,..., o, are neglected relative to unity, the
equilibrium oe-pair configuration correlation function, as given by Eq. (39)
of 1, is

8%qo; 4o) = exp[—(1/kT)Voe(qo, q0)] (10)

In other words, an expression for the potential of mean force which is valid
at “infinite dilution™ is V,.(q., q.). In solvents of relatively high dielectric
constant at ordinary temperatures, a satisfactory approximation™ to
229(q, ; q.) may be obtained by expanding the exponential expression of
Eq. (10) and retaining terms up to order (1/kT)? only. In order to simplify
our notation, we shall (often) omit the subscripts o« and «o and thus replace
Qao» Faos and dy, , bY a, r, and d,, respectively. From Equations (1)-(3) and
(10) we thus have

+ d a n 1 + ® d d a n+l
(2,0)( g+ — R e - n Az
@i = 1+ > () 45 3 B () an
o Be 1 1
Qe + ekt
e .4 o @
(2¢ + 60)kTp‘o T kTt

9e,? 1
t 3G ¥ o) kT 7t o Lo Iy
provided r > a.

Using the model which we described in Section 2 and the approximate
equilibrium oe«-pair configuration correlation function given by Eq. (11),
Kirkwood” studied the influence of electrolytes on the activity coefficients
of nonelectrolytes (salting out, Setchenow coefficients). This theory, which
may be employed to test the applicability of our model and the validity of
our approximations, is discussed in the appendix.

An approximate expression for the nonequilibrium perturbation to the
oa-pair configuration correlation function g2V(q,;q,) can be obtained by
solving the approximate steady-state equation of continuity in oc-pair
configuration space [see Eqs. (91), (123), and (131) of I} subject to the
appropriate boundary conditions. These boundary conditions are: (1) no
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interpenetration of the rigid spherical molecules or ions [see Egs. (26), (48), (92),
(124), and (134) of I1; and (2) no correlation at infinite separation of molecules
or ions in the fluid [see Eqs. (46), (125), and (136) of 1]. As in the equilibrium
case, we neglect terms of order C, and C, and terms of order 1/N, and 1/N,,
where o = 1,..., o, relative to unity. Also, we retain only quadratic terms in
(1/kT). The resulting expression for g2V(q,; q.) as given by Eq. (152) of I
is (see pp. 114-129 of I for all the details of these calculations)

851905 42)
1 e 2 d, 1 a
W = otxx Yn
[N (D + DYKT Zk (n--—3r"1

_n+1 a"”_f_l s @
2(n + 3)rm¥2 2 °r"+2

{Q—<—>——[ %(—)J

D,e,? . w3
T 4D, T D)@ + JETY [ @ =28 + =~ F<w’>]}E'**o

3 3 1
@ 2L ) emer
+ {N (cusr3 tae T wr) ¢

3D,e,? 3
(Do + D)(2e + e)(kT)? | w?r®

+

l 7 3_1 3 _1_ 22‘1"1_s
+r4(ﬁa §B°)+64(3+wr)r3 F(wr)

3 w?a® _, 1
- 5 Fen)| JE L1, - 3B

9€e‘z _ l o
B m—)—zﬁ (E-olto1, 3 w2E-1) (12)

provided r > a. By definition,
2D!()rot) 1/2
W = Wy, =~ (m) (13)

(we will write w,, when we want to emphasize that « depends on properties
of the nonelectrolyte molecules of species o and the electrolyte ions of species
«, in solution) and

2e — )
3 o) p 3
B2 = P b, (14
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The constants of integration NV, N®, and Q© are given by

D.e.a® B\? 2 d n+1
L — a-a — [0 — e -
N = 50, + DokT [1 (a) D 3)} (1)
+ Jeeupto”

(2e + &)*(KT)*

0w = Dye 2o exp(wa)
(Do + D) (2e + e )kT )2(1 + wa)

x [1 — ¢ 0®a®Flwa) + {sw*a*F'(wa)]

3D,e,2w exp(wa)
(Do + Dg)(2e + e )(kT)?

o | +12702a% — &w®a®(1 + $02a?)F(wa) + dgwta*(l +tw?a®)F (wa)
I + wa + $0%* + fwa®

N® —

Finally, the function F(x) and its derivative F'(x) are defined by
F(x) = ~(2/x) + ¢*Ei(x) — e *Ei(—x)

: : (16)
F'(x) = (2/x%) + €"Ei(x) + e *Ei(—x)
in terms of the exponential integrals
. L . |
Ei(x) = f 2¢ ¥ du, —Ei(—x) = J. -lze“ du {17

By simply averaging over orientations of the nonelectrolyte molecule
and of the electrolyte ion [see Eqgs. (32), (49), (44), (130), and (153) of IJ,
we obtain an approximate expression for the nonequilibrium oa-pair position
correlation function, namely

goa (ro H rot) = gO(Z 0)(7') -+ gz(n?x 1)(ro H ra) (18)
where
+ d a n 1 + oo d d +1
2,0y — R - 4 & 4
g ”(r) = 1+ ZkT(r) *3 2 B T()
3e,” P‘o 1
* 30 T ) kT (19)
and
1 e 2 d, 1 &
1), — | Ao = "‘ & _
8o To) [ Nt D, T DT ZkT( n—3r
n+1l @& 1 _.. a
BT PE i n+2)] (20)

when r > a.
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4.2. Relaxation Force

With intermolecular interactions assumed to be pair-additive, F(r,),
which includes the force on the reference ion of species « at position r, due
to the external field as well as the relaxation force on that ion, is given by
[see Eqgs. (29), (44), (50), (51), and (53) of 1]

1
FO(r,) = e,E + =y Cgf Fs.(qs, 902524 ; 95) A°R, d°q,

64 g Co f f For(9o, 0)22(4. ; 40) I°R, d°q, Q1

Since we are neglecting terms of order C;, where B8 = 1,..., o, relative to
unity, only the first and last terms on the right-hand side of this equation will
be retained.

The approximate «o-pair configuration correlation function g2(q, ; q,) =
22(q, ; q.) is given by Eqgs. (9), (11), and (12). The force F,,(q,, q,) on the
reference ion of species « at position r, due to the nonelectrolyte molecule
of species o in configuration q, = (r,, R,) as given by Eqgs. (D16} and (D30)
of Lis

— b 3
Foa(qo, ‘1«) = _VrVooc(qo: qa) + €, §6+—Z 3 (E’ — 3E-1 lr)

9e, 1 =
e S

€ — ¢ b(,3

3e, 1
[ }l“'o + eaz + & rs (E - 3E°1r1r) (22)

2¢ + €, 12

The last term is a force on the electrolyte ion of species « due to the external
electric field E. It arises as a result of having a spherical cavity of low dielectric
constant created by the nonelectrolyte molecule in the solvent. Here it is
considered as being due to a dipole of moment pd™® = [(e, — ¢)/3]6,°E
induced in the nonelectrolyte molecule—hence it is included in F . (q,, q.)-
Integration of Eq. (21), with terms of order E? neglected relative to terms
of order E, yields the result

(1) — _ ”Dtxea:al"oz E(_)E
FO() = e = 5 D0 + erthaya CF @ T 09

27 D,e, s 3 dy
+ 300, 3 by CEE@ — B )n; kT

4 Ameeas® Zm l;i

@ + P GT) ©



Effect of Added Nonelectrolytes on the Conductances of Electrolytes 21

LB
n+1)d

??‘lg_‘
§|*~

2'n'Da€a 2L
~ 30, + D) B 2, 2%

n*(l = 3) + n(I*> — 61 — 3) — 6]
4+ )+ DB+ =3 ] (23)

The function G(x) is defined by

3 — 3x — L3x% — Ix® + 1x%e*Ei(x)

1
Gx) = 6 + 6x + £x® + 2x°

(2%

4.3. Kinetic Force

The kinetic force on the reference ion of species « at position r, is given
by [see Eq. (103) of I]

K®(r,) = —kT z C, f f g3 1y + B, B2 sin O, dby, diy,

—kTC, H 0B s b + Rl I, B2 S0 Oy By e (25)

Since we are neglecting terms of order C,, where B = 1,..,, o, relative to
umity, only the last term on the right-hand side of this equation will be re-
tained. The function

gt(z%)(ra 5Ty + '@al = gt(z%z)(r(x + @alroa 5 rot)

Tou
is given by Eqs. (18)-(20) when #, > a,,; it vanishes when %, < a,,. As in
I (p. 132), we refine our model by identifying #, with a,,. Integration of
Eq. (25) yields the result

2w D,e dmeeqpo?
Q) - aCa 3 _ 3y _ oMo
Ka (ra) - S(Do + Da) COE(a Bo ) (26 + €0)2kT COE
2w D,e, s 2 d, n B2
=30, + by M 2 7 (n T3 —aT) (26)

4.4, Electrophoretic Velocity

The electrophoretic velocity of the reference ion of species o at position
r, is given by [see Eq. (107) of 1]

1 N Them T 1 (2,0) 3
Velbolre) = o B 3 Coen | o 10000 — s
=1 Tge =%a
1 Tog=+®
b ECe [ L8001, @)
7 tog=Fa Tow
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Since the nonelectrolyte molecules have zero net charges (e, = 0) and since
we are neglecting the macroscopic number densities of the electrolyte ions
C;, where B = 1,..., 0, relative to unity, for the solutions considered here,
motion of the electrolyte ions resulting from electrophoresis does not exist
[see Egs. (8), (23), and (26)]; i.e.,

vla(ra]ra) =0 28)

4.5. Limiting Equivalent lonic Conductances

From Egs. (6), (8), (23), (26), and (28), the limiting equivalent ionic
conductance of ionic species « in a dilute solution containing nonelectrolyte
molecules of species o (hence the subscript o) extrapolated to zero electrolyte
concentration [hence the superscript (0)] is {(with the subscripts o« and «o
now retained):

Ay = AD + A0h + AT%s + AQ%s 4+ A%, (29)
where
(0) .

A 299 299.79 I “] kT

— 27D,
YO N et - N O SR - RV (V)
x,01 3(D0 + Do:) (aao o) 1 Co

—drep,?
O — "I o
Ao (2e + €)%kT Ce

'77'0016012.“‘02 3
T D, F DG + T a, T Oated) | X

A0 2"’Dw 1 Qot,n
@03 Do+ Da) e 3 kT

27TD [()) 2R dozx n
=30, ¢ D) %N Ca Z 2. %7 KT
3) +
7=

L[l B _ (=3 +n@®—61=3) 6l
n+lad, n + 3)n + D(n + 3)
A0 4776.“’0 O doot,n

+o
w0t = (2e + €,)%kT “ G 24 kT

The first term, A, is the limiting equivalent conductance of ionic species «
extrapolated to zero nonelectrolyte concentration as well as to zero electrolyte
concentration. The remaining terms describe the variation of AQ), with the
concentration of the nonelectrolyte in extremely dilute solutions. The second
term, A%}, is a kinetic or pressure term, and results from collisions of the
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reference ion of species « with the nonelectrolyte molecules considered to be
uncharged, rigid, dielectric spheres. This is perhaps the ““ obstruction-effect
discussed by Robinson and Stokes (see Ref. 2). The third term, X{£),, results
from the long-range electrostatic ion—dipole interactions between the ref-
erence ion and the nonelectrolyte molecules in its atmosphere. It consists
of two parts: The first arises from the kinetic force, and the second arises
from the relaxation force. The fourth term, AL}, results from the short-range
forces between the reference ion and the nonelectrolyte molecules. It also
consists of two parts: The first arises from both the relaxation force and the
kinetic force, and the second arises from the relaxation force alone. Finally,
the fifth term, A),, is a cross term resulting from both the short-range forces
and the long-range ion-dipole forces. It arises from the relaxation force.

When the only important short-range forces are the electrostatic ion—
cavity repulsive (or attractive) forces between the electrolyte ions and their
image distributions in the spherical cavities of low (or high) dielectric con-
stant created by the nonelectrolyte molecules in the solvent, we can use for
the coefficient d,, , the value given by Eq. (4). This yields the results

o _ D e,? bo3 bs \ vy

As " 14(D, + D,)ekT ag, K(am, Co 30)
© . e, l“o b, b, )

=~ ey o Hae e

Terms of order (kT)~2 in X, resulting from the short-range forces have
been neglected. The functions K(x) and L(x) are defined by the series

14(}’1 + 1)(5 — €0) x2n
K(x) = z (211 + NDln + e + (n + 1)50]
_ = 2(” + 1)(5 - e‘o) 2n
L= 2 o+ Dt v el

Each of these series is absolutely convergent for 0 < x < 1.

Upon neglecting the dielectric constant in the interior of the non-
electrolyte cavity ¢, in relation to the much larger macroscopic dielectric
constant of the solvent ¢, we may write the above series in closed form,
namely

€23

$ e+ D),
Kx) = Z ENCEPN

=31;‘4[(1 +25 )ln(l + )+ (1 ——) In(1 —x)—%—g]

L2t 1) 2 2 2
L) = 3 S5 a™ = to + o+l + (1 - )

(32)

n=0
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This approximation was used by Kirkwood (see Ref. 7, p. 238). It is ““ generally
believed” that the dielectric constant in the interior of organic molecules
is about 2 (if it is even defined there?), whereas the dielectric constant of
water is about 80,

Upon introducing %, the concentration of the nonelectrolyte in (moles/
liter), with u, expressed in Debye units, b,, a,,, and B, in Angstrom units,
D, and D, in units of 10~% cm?/sec, and D in units of 101° sec~?, Eq. (29)
with A%, and AQ), given by Eq. (30) reduces to

Ay = AP+ Ador + AQea + Aes + A (33)
where
© . _ _ (126159 x 107D, . o a0
)‘a,ol Do + -Da Ao BD )Ad go
54.8414eu,?
0  — o (D)
)\a.02 (25 + E0)2:1« )‘a %o

(2.29073 x 10°)D,z,%u? 1 [B.
B (Do + Da)(ze -+ 60)2T2 a_‘m ;2: + G(waoaao) )\(o?)go

22.5843D,z,2% b,° b
0 — wéa Yo £ Uo | 3oy
}‘a.oﬁ (Do + Da)eT Qoo K(aao) )‘a %0

(229073 x 109)z,2u.2 b2 , { b,
pY() Yo 7o)\
@0t e+ oy an\a,) e

Here, z, is the valence of an ion of species o. When comparing this ““theo-
retical result” with experiments we shall use for K(x) and L(x) the closed
forms given by Eq. (32) in which «, is neglected relative to e.

4.6. Limiting Equivalent Conductances

From Eqgs. (7) and (33), the limiting equivalent conductance of a strong
electrolyte of two ionic species, called species o and species §8, as a function
of the nonelectrolyte concentration is

AP =)@, + AP, = A© + J%, (34)
where A© = XQ + X is the limiting equivalent conductance of the strong
electrolyte in the pure solvent (0%, nonelectrolyte by weight) and

J = (& — A€, + A% — X)/%, (35
is a constant whose theoretical value can be obtained from Eq. (33). Equation

(34) is our “‘law” describing the variation of A{” with the concentration of
the nonelectrolyte.
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5. COMPARISON OF THEORY WITH EXPERIMENTS

There have been a large number of experimental papers concerned with
the conductances of electrolytes in mixed solvents.® Incidentally, for mixed
solvents with two solvent species, we shall call the species present at the
lower concentration the added nonelectrolyte and we shall call the other
species the solvent. Unfortunately, in these experiments, the nonelectrolyte
concentrations have been relatively high (0.2 mole/liter or higher). Never-
theless, we include here a comparison of our theory with some typical ex-
perimental results.

To facilitate comparisons with experiments, a program was written for
a computer (IBM System/360 Model 75) using as input data 7, e, D,, D,,
DFev o, z,, by, and b,, and giving as output the values of the coefficients
of X%, in Eq. (33). It was assumed that €, = 2, and also that 4., = b, + b,.
For the functions K(x) and L(x) the closed forms given by Eq. (32) were used.
Finally, the exponential integral Ei(x) appearing in the function G(x) [see
Eq. (24)] was approximated by the Laguerre-Gauss quadrature using the
zeros and weight factors of the Laguerre polynomial of degree 15.®

5.1. Equivalent Conductances of Electrolytes in Mixtures of
Acetonitrile and Triisopropanolamine Borate

Fuoss and Fabry@® have measured the equivalent conductances of
solutions of triisoamylbutylammonium tetraphenylboride, picrate, and
iodide in mixtures of acetonitrile (MeCN) and triisopropanolamine borate

Table I. Experimental Limiting Equivalent Conductances
of Electrolytes in Solutions of TPAB in MeCN at 25°C*

Electrolyte €, A®

-AmsBuN* I- 0 160.68
0.4455 135.04

1.159 98.81

1.657 76.18

-AmsBuN* Pi~ 0 135.70
0.433 115.00

0.862 96.06

1.467 72.33

i-AmzBuN+* (] 116.26
BPhs~ 0.4455 97.10
1.159 69.90

1.657 53.08

2%, is the concentration of TPAB in moles/liter.
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Table Il. Properties of Electrolyte lons in Acetonitrile at 25.00°C

Ton («) A© D, x 108 ba
i-Am;BuN*+ 58.0 15.44 5.20
I- 102.1 27.18 2.17
Pi- 77.0 20.50 3.48
BPh,- 58.1 15.47 4.20

(TPAB) at 25°C. They found that “initial addition of the highly polar borate
decreases conductance due to ion-dipole interaction.” Their results are
summarized in Table I. We shall now test our theory against their experi-
mental data. Of course MeCN is the solvent, and TPAB is the added non-
electrolyte, henceforth called species o.

At 25.00°C the dielectric constant e of acetonitrile®® is 36.01. The
dipole moment p, of TPAB is 8.00 Debye units.*? The radius b, of the TPAB
molecule—as estimated by summing atomic increments and also from vis-
cosity measurements—is 4.00 A units. Using Stokes’ laws [see Eqs. (73) and

T T T 1Tt T 111171 1 T 1
Experimental

® i-AmgBUNT I7
m i-AmzBuN® BPhg A

160

Theoretical

0= i~AmzBUN T -

- i—Am3BuN+ BPhg~

Go s moI?S/lif?r

Fig. 1. The variations of the limiting equivalent conductances of electrolytes in aceto-
nitrile solutions of TPAB at 25°C with the concentration of the TPAB. (Results for the
picrate are not included so as to keep the figure uncluttered.)
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Table IV. Theoretical Limiting Equivalent Conductances in Acetonitrile
Solutions of TPAB at 25°C

Electrolyte A©@ J AP = A©® 4 J%,
-AmzBuN™* I~ 160.68 —60.24 AP = 160.68 — 60.24%,
i-AmsBuN* Pi~ 135.70 —58.88 A® = 13570 — 58.88%,
i-AmgBuN+* BPh,~ 116.26 —54.36 AP = 116.26 — 54.36%,

(81) of I] and noting that the viscosity » of acetonitrile at 25.00°C is 3.449 x
1073 P,AV the translational diffusion constant of TPAB is estimated to be
D, = 15.82 x 10~® cm?/sec and its rotational diffusion coefficient is esti-
mated to be DFY = 0.742 x 101°sec—1.

Table II contains limiting equivalent conductances®? and limiting
translational diffusion constants for the ions i-Amz;BuN*, I-, Pi~, and
BPh,~ in acetonitrile at 25.00°C as well as ionic radii—either crystallographic
radii or estimates based on molecular models. The diffusion constants were
computed from the limiting ionic conductances with Eq. (29).

Tables III and IV summarize the computation of theoretical limiting
equivalent conductances using Egs. (33)-(35). Finally, in Fig. 1, thetheoretical
results from Table IV are compared with the experimental results of Table L.

5.2. Equivalent Conductances of Electrolytes in Mixtures of
Glycine and Water

Justice and Fuoss“*® and Treiner and Justice (see Ref. 8, p. 838) have
measured the conductances of solutions of potassium chloride and of

Table V. Experimental Limiting Equivalent Conductances
of Electrolytes in Solutions of Glycine in Water at 256°C¢

Electrolyte %, A©®

K* Cl- 0 149.85
0.258 144.7
0.475 140.8
0.731 136.3
0.918 133.0
1.223 127.8
1.477 123.4

(C.Hg);N* Br~ 0 97.23
0.3296 93.18
0.7003 88.70
1.2816 82.10

& &, is the concentration of glycine in moles/liter.
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Table VI. Properties of Electrolyte lons in Water at 25.00°C

Ion (o)

AP D, x 10° b,
K+ 73.50 19.568 1.331
Cl- 76.35 20.327 1.806
(C4Hg) N+ 19.47 5.183 4.94
Br- 78.14 20.803 1.951
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tetrabutylammonium bromide, respectively, in mixtures of glycine and water
at 25°C. Their results are summarized in Table V.

At 25.00°C the dielectric constant e of water is 78.303. The dipole moment
po of glycine is 15.5 Debye units (see Appendix J of I for this and other
properties of glycine). The radius b, of the glycine molecule—as estimated
by summing atomic increments—is 2.40 A units. The translational diffusion
constant of glycine at 25°C is D, = 10.635 x 10~° cm?/sec and its rotational

diffusion coefficient at 25°C is DF°® = 1.02 x 10%sec~1.

Table VI (see Appendix I of I) contains limiting equivalent conductances
and limiting translational diffusion constants for the ions K*, CI~, (C,Hg),N*,
and Br~ in water at 25.00°C, and also ionic radii.

T 1 7 T T T 1 L
160 I~
T 140
E
£
o
N
> 120
>
>
[\
NE 100
o
80
3o
60 Experimental Theoretical
L e k¥ cCIT B -o- K*Cl |
® (CaHglgN ™ Br = Cahg)yN” BrY
ol 0 010y 4 L))
0.0 0.5 .o 1.5
éio moles /liter

bl

Fig. 2. The variations of the limiting equivalent conductances of electrolytes in solutions
of glycine in water at 25°C with the concentration of the glycine.
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Table VIIl. Theoretical Limiting Equivalent Conductances in Solutions of
Glycine in Water at 25°C

Electrolyte A® J AP = A® + J%,
K+ Cl- 149.85 —35.26 AL = 149.85 — 35.26%,
(C:Hg)sN* Br- 97.23 —23.86 AP = 97,23 — 23.86%,

Tables VII and VIII summarize the computation of the theoretical
limiting equivalent conductances. Finally, in Fig. 2, the theoretical results
from Table VIII are compared with the experimental results of Table V.

5.3. Equivalent lonic Conductances in Mixtures of
Sucrose and Water

Stokes et al.**® have determined the limiting equivalent conductances
and the limiting transference numbers for a number of electrolytes in 10%,
(by weight) and 20%, solutions of sucrose in water at 25°C. Their results are
summarized in Table IX. In order to save space, this table also includes
limiting equivalent ionic conductances in water at 25°C, limiting translational
diffusion constants for ions in water at 25°C, and ionic radii. Incidentally,
a 10%, aqueous sucrose solution at 25°C has a sucrose concentration of 0.302
mole/liter; and a 20%, solution has a sucrose concentration of 0.631 mole/
liter.

Table IX. Experimental Limiting Equivalent lonic Conductances in Solutions
of Sucrose in Water at 25°C and Properties of lons in Water at 25°C

X2, X2,
AP 0% (207,
Ion (&) (0%, Sucrose) Sucrose) Sucrose) D, x 10° b,
Li* 38.68 31.0 23.6 10.298 0.607
Na* 50.10 40.6 31.1 13.338 0.958
K+ 73.50 59.7 46.1 19.568 1.331
Ag* 61.90 49.5 37.6 16.480 1.26
Mg?* 53.05 41.8 309 7.062 0.65
Ca?+ 59.50 46.8 34.8 7.920 0.99
La8+ 69.75 54.2 39.5 6.185 1.15
(n-Am), N+ 17.47 13.3 9.6 4.651 5.29
Cl- 76.35 62.2 48.2 20.327 1.806
Br- 78.14 63.1 48.4 20.803 1.951

I- 76.84 61.2 46.4 20.457 2.168
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Fig. 3. The variations of the limiting equivalent ionic conductances in solutions of
sucrose in water at 25°C with the concentration of the sucrose. (Only the results for the
ions K*, Mg?* and (n-Am):N* are shown.)

The dipole moment g, of sucrose is 3 Debye units, and the radius b, of
the sucrose molecule is 4.5 A units (see Appendix J of I). Its translational
diffusion coefficient in water at 25°C is@® D, = 5.226 x 107° cm?/sec;
and from Stokes’ law we estimate that its rotational diffusion coefficient in
water at 25°C is D&F°P = 0.1783 x 10%° sec™1,

Table X summarizes the computation of the theoretical limiting equiva-
lent ionic conductances. Finally, in Fig. 3, the theoretical results from Table
X are compared with the experimental results of Table IX.

5.4. Concluding Remark

Agreement between theory and experiments is not impressive (this is
clear from the graphs). In those cases for which agreement is good, this may
be fortuitous. Nevertheless, the work done here is one which needed to be
done so as to push forward the study of the conductances of electrolytes
in mixed solvents.?® Final judgment on the applicability of our simple
model and on the validity of our approximate theory must await further
measurements, at higher dilutions (lower nonelectrolyte concentrations),-on
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systems which one would expect to be most amenable to representation
by our model.

APPENDIX. INFLUENCE OF ELECTROLYTES ON THE
ACTIVITY COEFFICIENTS OF NONELECTROLYTES

Using the model which we have described in Section 2, Kirkwood™
obtained a “‘limiting law’>—valid at infinite dilution—relating the activity
coefficient of the nonelectrolyte to the concentrations of the solute species.
We shall summarize his results. On the one hand, this theory may be em-
ployed to test the applicability of our model and the validity of (some of)
our approximations, and on the other, to determine structural parameters and
information about the forces between ions and neutral molecules in solution.

The activity coefficient y, of the nonelectrolyte component of the solution
is defined by the equations

Mo = F’o*(T’ p) + RTIn (v,%,) (A.1)
p (T, p) = hmo (4o — RTIn %) (A.2)
Ca—r
Q=1y.0s0

where p, is the chemical potential of the nonelectrolyte species, %, is its
molar concentration, and %, is the molar concentration of the ionic species .

Kirkwood has shown that with the solvent idealized as a structureless
dielectric continuum a “limiting law™ for the logarithm of the activity
coefficient is

Iny, = Z B, %, (A.3)
a=1
with
B = 2 (7777 11 - g0 a1
oo 1000 fao= aao oo 0 > Q. [14e}

where N, is the Avogadro number.
For an ideal dipolar nonelectrolyte g%%(q, ; q,) is given (approximately)
by Eq. (11) so B,, becomes (with the subscripts «o and o« retained):

+ o
Boa — _47TNA [ago Z 1 doa,n

n=
4+ 400
3 1 doa,n doat,l
Ago

2
_ et ] (A4)

where g, is the dipole moment {magnitude) of the nonelectrolyte molecule.
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When the only important short-range forces are the electrostatic ion~
cavity repulsive forces between the electrolyte ions and their image distri-
butions in the spherical cavities of low dielectric constant created by the
nonelectrolyte molecules in the solvent, we can use for d,, , the value given
in Eq. (4) and obtain the result

2 2 3
B,, = _27TNA€,Z [ 3ep, L B lb_"M(ﬂ)} (A.5)

1000k T | 2e + e?kT Gy 2 un’ \dao

where M(x) is defined by the series

= T 2An+ 1) € — €, i
M(x) = n§=: 2n 4+ 1 (n+ 2)e + (1 + l)eo (A.6)

In Eq. (A.5) we have neglected terms of order (kT)~? resulting from short-
range forces. If we now neglect terms of order ¢, relative to terms of order
¢, we have

& 2mt )

MA = 2 Gz Dm 19

x2n

_ 3»1— [ = 2 In(l + ) — (3 + 2)In(l — x) — 2] (A.T)

From Egs. (A.5) and (A.3), the logarithm of the activity coefficient is

3 27TNA€2 3”’0 g aza 4 qu& b
1081070 = T 2303ekT [4€kT = a=1 Yo e Qa0

(A.8)

where e is the protonic charge.
For a strong electrolyte C, A,, of two ionic species C* and A® which is
completely dissociated,

C Ay, > vC% + v A

we can write €, = v, % and €, = v,€, where € is the molar concentration
of the electrolyte. Consequently,

lim alogin vo) _ 3Na®p® (vezd® | vpZg®
#-0 &% ~ 4606(ekT)? \ a,, Qo
00

7N 22 [v,z,2 be v5Zs® o ba’
* 2303k T | an, M\aw) T an M aﬁo) (&9
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Finally, for water as the solvent at 25°C, this becomes

2 2
lim 90810 7o) _ —2.74 x 103,32 (Vazo: L V6% )
g_,% 0 Ago aﬁo

i 2
+5.88 x 10-3p3 l%z— M(ﬁ)

(1] aao

L e M(Z’g)] (A.10)

Ago Qgo

with p, expressed in Debye units, and b,, a,,, and a;, in Angstrém units.

System: Glycine-KCIi-Water

For glycine and KCl in water at 25°C, Roberts and Kirkwood *® found
that

lim
€—~0
(fo—bo

o(logo v,) _
7 = —0.1794

Using o for the ionic species K* and B for Cl~ and letting b, = 2.40, a,, =
b, + by = 2.40 + 1.331 = 3.731, and a4, = b, + b; = 2.40 + 1.806 =4.206,
we find from Eq. (A.10) p, = 12.9 for glycine. This is close to the value 14.4
based on structural considerations.®™ Qur model seems to be adequate in
this case.

System: Mannitol-NaCl-Water
For mannitol and NaCl in water at 25°C Kelly et al.“® found that

. 0(logye ¥
lim Aot 7 _ _0.00632
?o—»%
Using o for the ionic species Na* and 8 for Cl~ and letting b, = 4.0, a,, =
b, + b, = 4.0 + 0.958 = 4.958, and az, = b, + b; = 4.0 + 1.806 = 5.806,
we find from Eq. (A.10) p, = 14.3 for mannitol. This is far too large. The
dipole moment of mannitol is about 4 (see I, p. 201). Doubt is cast on the use
of our model to represent mannitol. Since the sucrose molecule is about the
same size as the mannitol molecule (see I, p. 204) and has about the same
dipole moment (see I, p. 201) and since conductance measurements for electro-
lytes in mannitol solutions are similar to those for electrolytes in sucrose
solutions,*® doubt is also cast on the use of our model to represent sucrose.
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